TRUST SMITH、ロボットが物体を掴む上で最適な位置を検出するアルゴリズムを実用化

最先端のAI・ロボティクスの技術を活用したソリューション提供を行うTRUST SMITHは15日、ロボットが物体を掴む上で最適な位置を検出するアルゴリズムを実用化したと発表した。

本技術により、モデルレスでのピッキングタスクを実現し、工場における労働力不足の解消や作業効率の向上を目指すという。

産業用ロボットの重要なタスクとして物体を正確に掴むことが挙げられる。このピッキングタスクを実現するためには、ロボットに搭載されているカメラセンサを用いて、物体の画像を撮影し、その物体の最適な把持位置を検出する必要がある。

近年はDeep Learningを用いた物体の把持位置を検出する方法に注目が高まっており、その手法は把持位置を高精度に検出できるが、莫大な学習データ量・学習時間が必要であることが問題だった。

そこでTRUST SMITHは、ロボットが物体を掴む上で最適な位置を検出するアルゴリズムを開発・実用化した。本技術により、学習データに含まれない物体の把持位置も高精度に検出するという。

本技術は、深度カメラにより取得した対象の画像に対して、各位置・各角度でロボットアームのハンドを挿入した時に物体を把持できる可能性を評価し、その可能性が最も高い把持方法を探索するアルゴリズム。

モデルレス物体認識アルゴリズム 特徴
①学習データに含まれない未知の物体の把持位置を高精度に検出可能
教師データなしで把持位置の検出をすることが可能なため、学習モデルを構築する必要がない。これにより、学習させていない物体は把持できない、という事態を回避できる。
②把持に不適切な対象物の除去
把持に適した位置、そうでない位置を定義することによって、把持に不適切な物体の除去が可能。加えて、把持可能な物体の中でも把持が難しい把持位置を除去することが可能となるため空掴みといった事象も減らすことが可能。

今後は、本アルゴリズムを用いた物体認識と、同社が得意としているアームロボットの経路生成アルゴリズムを組み合わせ、バラ積みピッキングをはじめとした工場内のピッキングシステムを開発していく予定。

加えて、同社が得意とする量子化技術やFPGAなどの技術によりアルゴリズムの高速化を狙う。物体認識技術の高度化による高精度化も進め、より高速かつ高精度なピッキングシステムを提供する。それによりあらゆる工場内の更なる自動化を進めていくとしている。

関連URL

TRUST SMITH  

関連記事

注目記事

  1. 2024-7-12

    生成AIによるオススメフォントのアドバイスサービス「DynaGPT」リリース記念キャンペーン

    主に文字フォント開発、およびその関連製品の開発・販売・保守を行う、ダイナコムウェアは、生成AIによる…
  2. 2024-7-6

    WITCRAFT、生成AIを活用した動画サービスDO/AI(ドゥ・エーアイ)を提供開始

    WITCRAFTは2日、生成AIを活用した動画サービスDO/AI(ドゥ・エーアイ)を提供開始した。 …
  3. 2024-7-3

    AI英語アプリ「マグナとふしぎの少女」、GIGAスクール端末向けにアップデート

    昨年夏、学校内で流行りすぎて公開停止となったミントフラッグの英語学習アプリ「マグナとふしぎの少女」は…
  4. 2024-6-19

    NVIDIA、生成 AI が台風を追跡しエネルギー消費を抑制

    NVIDIAは12日、従来、CPU のクラスターで複雑なアルゴリズムを実行し、25キロメートル解像度…
  5. 2024-6-10

    アイスマイリー、認識系から生成系までAI活用の最前線ウェビナー28日開催

    AIポータルメディア「AIsmiley」を運営するアイスマイリーは、ビジネス現場向け最新AIウェビナ…

カテゴリー

最近の投稿

ページ上部へ戻る