TRUST SMITH、ロボットが物体を掴む上で最適な位置を検出するアルゴリズムを実用化

最先端のAI・ロボティクスの技術を活用したソリューション提供を行うTRUST SMITHは15日、ロボットが物体を掴む上で最適な位置を検出するアルゴリズムを実用化したと発表した。

本技術により、モデルレスでのピッキングタスクを実現し、工場における労働力不足の解消や作業効率の向上を目指すという。

産業用ロボットの重要なタスクとして物体を正確に掴むことが挙げられる。このピッキングタスクを実現するためには、ロボットに搭載されているカメラセンサを用いて、物体の画像を撮影し、その物体の最適な把持位置を検出する必要がある。

近年はDeep Learningを用いた物体の把持位置を検出する方法に注目が高まっており、その手法は把持位置を高精度に検出できるが、莫大な学習データ量・学習時間が必要であることが問題だった。

そこでTRUST SMITHは、ロボットが物体を掴む上で最適な位置を検出するアルゴリズムを開発・実用化した。本技術により、学習データに含まれない物体の把持位置も高精度に検出するという。

本技術は、深度カメラにより取得した対象の画像に対して、各位置・各角度でロボットアームのハンドを挿入した時に物体を把持できる可能性を評価し、その可能性が最も高い把持方法を探索するアルゴリズム。

モデルレス物体認識アルゴリズム 特徴
①学習データに含まれない未知の物体の把持位置を高精度に検出可能
教師データなしで把持位置の検出をすることが可能なため、学習モデルを構築する必要がない。これにより、学習させていない物体は把持できない、という事態を回避できる。
②把持に不適切な対象物の除去
把持に適した位置、そうでない位置を定義することによって、把持に不適切な物体の除去が可能。加えて、把持可能な物体の中でも把持が難しい把持位置を除去することが可能となるため空掴みといった事象も減らすことが可能。

今後は、本アルゴリズムを用いた物体認識と、同社が得意としているアームロボットの経路生成アルゴリズムを組み合わせ、バラ積みピッキングをはじめとした工場内のピッキングシステムを開発していく予定。

加えて、同社が得意とする量子化技術やFPGAなどの技術によりアルゴリズムの高速化を狙う。物体認識技術の高度化による高精度化も進め、より高速かつ高精度なピッキングシステムを提供する。それによりあらゆる工場内の更なる自動化を進めていくとしている。

関連URL

TRUST SMITH  

関連記事

注目記事

  1. 2021-12-1

    アトラックラボ、ロボットによる水産業の省人・省力化へ「漁火ロボ」を開発

    アトラックラボは1日、長崎県産業振興財団の海洋技術振興事業による支援を受ける、天洋丸、長崎大学大学院…
  2. 2021-11-30

    DNP、AIで顧客の声から“感情”を解析し効果的なリモート接客を支援

    大日本印刷(DNP)は30日、リモートで接客中の顧客の声からAI(人工知能)が“感情”を解析し、接客…
  3. 2021-11-29

    SMITH & FACTORY、ロボット導入に必要なロケーション管理システムを提供

    最先端のAI・ロボティクスの技術を活用したソリューション提供を行うTRUST SMITHグループ傘下…
  4. 2021-11-26

    講談社、KickstarterNaviに感情表現がキュートな卓上ロボット「Eilik」登場

    講談社クリエイターズラボ KickstarterNaviは25日、感情表現がキュートな買いやすい卓上…
  5. 2021-11-22

    コト、呼吸のリズムをAIが解析するスマートデバイス「ZenTracker(仮称)」を開発

    枯れた技術の水平思考で世の中を楽しくするコトは22日、呼吸のリズムを視覚化するスマートデバイス「Ze…

カテゴリー

最近の投稿

ページ上部へ戻る